POINCARÉ DUALITY EXERCISES

STEVEN SIVEK

In each of these exercises, M will be a closed, oriented smooth manifold.

(1) Suppose that M has dimension 2k. Prove that the intersection pairing

$$i: H_k(M) \otimes H_k(M) \to \mathbb{Z}$$

and the wedge product pairing

$$\int_{M} - \wedge - : H^{k}_{\mathrm{dR}}(M) \otimes H^{k}_{\mathrm{dR}}(M) \to \mathbb{R}$$

are symmetric if k is even, and antisymmetric if k is odd.

H

(2) Use Stokes's theorem to prove that there is a well-defined pairing

$$_{k}(M) \otimes H^{k}_{\mathrm{dR}}(M) \to \mathbb{R}$$

 $[X] \otimes [\omega] \mapsto \int_{X} \omega.$

You may assume that some multiple of every class in $H_k(M; \mathbb{Z})$ is represented by a smoothly embedded submanifold.

(3) Prove that a form $\alpha \in \Omega_c^1(\mathbb{R})$ is exact if and only if $\int_{\mathbb{R}} \alpha = 0$. Conclude that $H_c^1(\mathbb{R}) \cong \mathbb{R}$. More generally, prove that if $f : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is continuous, compactly supported, and positive somewhere then

$$\alpha = f \, dx_1 \wedge dx_2 \wedge \dots \wedge dx_n \in \Omega^n_c(\mathbb{R}^n)$$

is closed but not exact, so that $H^n_c(\mathbb{R}^n)$ is nonzero.

(4) Fix a compactly supported function $f : \mathbb{R} \to \mathbb{R}$ with $\int_{\mathbb{R}} f \, dx = 1$, and define a map

$$e_n: \Omega_c^*(\mathbb{R}^n) \to \Omega_c^*(\mathbb{R}^{n+1})$$
$$\alpha \mapsto \alpha \wedge f(x_{n+1}) \, dx_{n+1}.$$

Prove that e_n sends closed forms to closed forms and exact forms to exact forms, and hence defines for each k a map

$$(e_n)_*: H^k_c(\mathbb{R}^n) \to H^{k+1}_c(\mathbb{R}^{n+1}).$$

This map is an isomorphism (see §4 of Bott–Tu), which allows us to determine $H_c^*(\mathbb{R}^n)$.

(5) Let M have dimension n, and let $X, Y \subset M$ be transversely intersecting oriented submanifolds of dimensions n-1 and 1 respectively. Let $\eta_X \in \Omega^1(M)$ be the 1-form defined in lecture. Prove that $\int_Y \eta_X = i(X, Y)$. (Hint: work in explicit coordinates near a single point $p \in X \cap Y$.)

Date: 18th October 2024.